PROVA TIPO 045/52 - CONCURSO IBAMA - ANALISTA ADMINISTRATIVO

MATEMÁTICA FINANCEIRA

QUESTÕES DE 111 a 120

Prof. Thiago Fernando Cardoso da Silva

QUESTÃO NÚMERO 111

GABARITO PRELIMINAR: Errado

COMENTÁRIO:

Como o empréstimo teve 2 meses de carência, os juros se acumularão e a dívida passará a ser:

$$M = C \cdot (1 + i)^{t} = 100000 \cdot (1 + 0, 10)^{2} = 100000 \cdot (1, 10)^{2}$$

 $M = 100000 \cdot 1, 21 = 121000$

Podemos, então, calcular o fator de amortização referente ao empréstimo.

$$A = \frac{(1+i)^{n}-1}{i(1+i)^{n}} = \frac{(1,1)^{7}-1}{0,1\cdot(1,1)^{7}} = \frac{2-1}{0,1\cdot 2} = \frac{1}{0,2} = 5$$

Então, a parcela a ser paga é:

$$P = \frac{M}{A} = \frac{121000}{5} = 24200$$

Portanto, é superior ao valor afirmado no enunciado.

QUESTÃO NÚMERO 112

GABARITO PRELIMINAR: Certo

COMENTÁRIO:

De fato, no sistema de amortização constante, todos os meses é realizada uma amortização. Com isso, o saldo devedor decresce, e, consequentemente, os juros sobre esse saldo devedor.

Além disso, como a amortização é constante, os juros sempre decrescem por meio de uma progressão aritmética. Desse modo, a diferença entre duas parcelas consecutivas é sempre constante.

QUESTÃO NÚMERO 113

GABARITO PRELIMINAR: Certo

COMENTÁRIO:

Primeiramente, vamos calcular a potência que será necessária:

$$(1,1)^9 = (1,1)^7 \cdot (1,1)^2 = 2.1,21 = 2,42$$

Assim, podemos calcular o fator de amortização.

$$A = \frac{(1+i)^n - 1}{i \cdot (1+i)^n} = \frac{2,42-1}{0,1 \cdot 2,42} = \frac{1,42}{0,1 \cdot 2,42}$$

Desse modo, a parcela calculada pelo sistema francês seria:

$$P_{SAF} = \frac{C}{A} = 270000 \cdot \frac{0.1 \cdot 2.42}{1.42} = 46014$$

Por outro lado, no sistema de amortização constante, haveria uma amortização constante de:

$$Am = \frac{C}{N} = \frac{270000}{9} = 30000$$

Na quinta prestação, já teriam sido feitos 4 pagamentos. Então, o saldo devedor teria sido reduzido em 4 fatores de amortização, passando a ser:

$$D_4 = C - 4.4m = 270000 - 4.30000 = 270000 - 120000 = 150000$$

Então,

$$J_5 = D_4 it = 150000 \cdot 0, 10 \cdot 1 = 15000$$

Portanto, a parcela que seria paga pelo sistema de amortização constante seria:

$$P_{SAC} = J_5 + Am = 30000 + 15000 = 45000$$

A parcela a ser paga no sistema de amortização misto corresponde à média aritmética dos dois sistemas.

$$P_{SAM} = \frac{P_{SAF} + P_{SAC}}{2} = \frac{46014 + 45000}{2} = 45507$$

Portanto, seria superior a R\$45.000

QUESTÃO NÚMERO 114

GABARITO PRELIMINAR: Certo

COMENTÁRIO:

Vamos calcular a taxa efetiva semestral usando as taxas de juros equivalentes.

$$\left(1+i_{s}\right)^{2}=\left(1+i_{a}\right)$$

$$(1 + i_s)^2 = 1 + 0,44 = 1,44$$

Podemos extrair a raiz quadrada:

$$:1 + i_{s} = \sqrt{1,44} = 1,2$$

Assim, a taxa semestral é:

$$i_s = 1, 2 - 1 = 0, 20 = 20\%$$

A taxa anual nominal deve ser calculada usando o conceito de juros proporcionais. Como 1 ano tem 2 semestres, temos:

$$i_{a} = 2.20\% = 40\%$$

QUESTÃO NÚMERO 115

GABARITO PRELIMINAR: Errado

COMENTÁRIO:

A suposição do enunciado é que, após os nascimentos, haveria 28 pássaros. Desse modo, se os machos correspondem a 30% da população total o número de machos deveria ser:

$$M = 0,30.28 = 8,4$$

Portanto, a suposição está inconsistente com as premissas do enunciado. Logo, ela é falsa.

QUESTÃO NÚMERO 116

GABARITO PRELIMINAR: Certo

COMENTÁRIO:

Vamos utilizar a expressão dos juros compostos.

$$M = C \cdot (1 + i)^t$$

$$5590, 20 = 4200 \cdot (1+i)^3$$

Podemos, então, calcular a razão:

$$(1+i)^3 = \frac{5590,20}{4200} \cong 1,331$$

O enunciado afirmou que a taxa de juros é de 10% ao ano. Vamos verificar se essa taxa está consistente com o cálculo acima.

$$(1 + 0, 1)^3 = (1, 1)^3 = 1,331$$

Está sim. Portanto, a afirmação está correta.

QUESTÃO NÚMERO 117

GABARITO PRELIMINAR: Certo

COMENTÁRIO:

Vamos montar as proporções, usando a variável "dias" como dependente.

Note que, quanto mais macacos existirem, menos dias eles poderão se alimentar. Por outro lado, quanto mais frutas estiverem disponíveis, mais dias elas durarão.

	Macacos	Frutas	Dias
	6	15 kg	5
•	14	189 kg	9

Vamos montar as proporções e determinar se está equilibrada.

$$\frac{9}{5} = \frac{189}{45} \cdot \frac{6}{14}$$

Podemos simplificar 189 e 14 por 7, o que fica 27 e 2. Também podemos simplificar 6 e 45 por 3, o que fica 2 e 15.

$$\frac{9}{5} = \frac{27}{15} \cdot \frac{2}{2}$$

Em seguida, podemos simplificar 27 e 15 por 3, ficando 9 e 5.

$$\frac{9}{5} = \frac{9}{5}$$

Dessa forma, a proporção está balanceada, e a afirmação está correta.

QUESTÃO NÚMERO 118

GABARITO PRELIMINAR: Errado

COMENTÁRIO:

Podemos calcular o VPL considerando a taxa de desconto de 20% ao ano.

$$VPL = -72000 + \frac{36000}{1,2} + \frac{45000}{(1,2)^2}$$

Fazendo as contas, temos:

$$VPL = -72000 + 30000 + \frac{45000}{1,44} = -42000 + 31250 = -10750$$

Como o VPL foi negativo, isso significa que a rentabilidade da aplicação foi inferior a 20%.

QUESTÃO NÚMERO 119

GABARITO PRELIMINAR: Errado

COMENTÁRIO:

Vamos utilizar o fator de acumulação.

$$S = \frac{(1+i)^n - 1}{i} = \frac{(1,20)^3 - 1}{0,20} = \frac{1,728 - 1}{0,2} = \frac{0,728}{0,2} = 3,64$$

Então, a quantia acumulada será:

$$M = DS = 5000.3,64 = 18200$$

QUESTÃO NÚMERO 120

GABARITO PRELIMINAR: Errado

COMENTÁRIO:

Vamos utilizar o fator de resgate de capital.

$$A = \frac{(1+i)^n - 1}{i \cdot (1+i)^n} = \frac{(1,30)^3 - 1}{0,30 \cdot (1,30)^3} = \frac{2,197 - 1}{0,3 \cdot 2,197} = \frac{1,197}{0,3 \cdot 2,197} = 1,81$$

Então, o resgate mensal será:

$$P = \frac{C}{A} = \frac{5000}{1.81} \approx 2762,43$$

Portanto, é um valor ligeiramente superior a R\$2.700,00.

Thiago Fernando Cardoso

Engenheiro Eletrônico formado pelo ITA com distinção em Matemática, Analista-chefe da Múltiplos Investimentos, especialista em mercado de ações. Professor desde os 19 anos e, atualmente, leciona todos os ramos Matemática para Concursos Públicos.

Gran Cursos Online